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Many automated generalisation methods are based on local search optimisation tech-
niques: Starting from an initial state of the data, one or several new child states are
produced using some transformation algorithms. These child states are then evaluated
according to the final data requirements, and possibly used as new candidate state to
transform. According to this approach, the generalisation process can be seen as a
walk in a tree, each node representing a state of the data, and each link a transfor-
mation. In such an approach, the tree exploration heuristic has a great impact on the
final result: Depending on which parts of the tree are either explored or pruned, the
final result is different, and the process more or less computationally prohibitive. This
article investigates the importance of exploration heuristic choice in automated general-
isation. Different pruning criteria are proposed and tested on real generalisation cases.
Recommendations on how to choose the pruning criterion depending on the need are
provided.

Keywords: generalisation; exploration; local search; pruning criterion; artificial
intelligence

1. Introduction

Generalisation is the simplification performed on geographical data when decreasing their
representation scale. The purpose of this complex operation is to adapt the level of detail of
the data for some specific needs. This operation is particularly important to produce coun-
trywide map series at different scales from a single detailed database. The generalisation
automation still remains an open issue for data producers and users. Many generalisation
models introduce artificial intelligence techniques to progress towards an always higher
level of automation. Among these generalisation models, some consider the generalisation
process as an informed exploration of a state tree: Each node of the tree represents a state
of the data and is a candidate to be a ‘better’ generalised state. Each state is assessed using
an evaluation function which evaluates the distance to a hypothetical perfectly generalised
state. A child state is the state obtained after the application of a generalisation trans-
formation algorithm to its parent state. Because the number of states to explore increases
rapidly with the number of transformations available (and different sets of parameters asso-
ciated with them), the strategy used to explore the state tree has to be considered carefully.
In existing methodologies, some strategies have been proposed and give promising results.
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1310 P. Taillandier and J. Gaffuri

This article focuses on a specific criterion of the exploration strategy, the pruning criterion,
which determines which child states have to be explored. Our purpose is to show the impor-
tance of this criterion and to propose new pruning criteria to produce better generalised data
faster.

In the next sections, we present the generalisation model we use to test some new prun-
ing criteria we propose. The outcomes of these tests are analysed and recommendations on
how to choose the pruning criterion are provided.

2. Context

2.1. Tree search strategy in local search generalisation models

Recent contributions in generalisation automation research mainly concern the develop-
ment of transformation algorithms, spatial analysis methods and generalisation models.
Generalisation models provide generic frameworks to perform a complete orchestration of
the generalisation process. Most of them, based on the approach of Beard (1991), con-
sider generalisation as a constraint satisfaction problem: The target state of the data is
formalised by a set of constraints on some characteristics of the objects. A generalisation
model provides thus a generic optimisation method to solve this constraint satisfaction
problem. Some of these generalisation models use global deformation techniques to obtain
a well-generalised state of the data. For example, Sester (2000) and Harrie and Sarjakoski
(2002) adapt least square adjustment to optimise the set of constraints (represented by
equations on the object geometry coordinates). Burghardt and Meier (1997), Bader (2001)
and Højholt (2000) use the finite elements method.

Other generalisation models are based on a local search approach: Starting from the
initial state of the data, child states are produced using discrete transformation algorithms.
These child states are then evaluated and possibly reused as next candidates to produce new
states. The generalisation process consists in a local exploration in a state tree. Brassel and
Weibel (1988) and Mcmaster and Shea (1992) first proposed to use such an approach in
map generalisation. They underlined the need for decomposition of the generalisation pro-
cess into several steps, and the need for generalisation evaluation methods to better control
the progression of the process towards a good generalised state. Ruas and Plazanet (1996)
introduced an exploration process where the data are first split into small parts and then
progressively transformed using a depth-first exploration process with single backtracking.
Other generalisation models based on this local search approach propose to use common
exploration heuristics like steepest gradient descent and simulated annealing (Ware and
Jones 1998) or genetic algorithms (Wilson et al. 2003). In this article, we focus on the
AGENT model presented in the section ‘The AGENT model’.

2.2. The AGENT model

The AGENT model is based on Ruas (1999) and was developed during the AGENT
European project (Lamy et al. 1999). It is an application of the agent paradigm in gen-
eralisation. An agent is ‘a computer system that is situated in some environment and that
is capable of autonomous action in this environment in order to meet its design objectives’
(Weiss 1999, p. 29). An agent can be seen as an ‘alive’ object, which has a goal and capa-
bilities to autonomously reach this goal by possibly interacting with other agents. In the
AGENT model, each geographic object is an agent, whose purpose is to generalise itself by
taking into account its state and its context. The agent has the capability to evaluate its state
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by using some spatial analysis methods, and to choose and apply a suitable transformation
algorithm on itself depending on its state. An agent can be a single object, like a building
or a road section (these agents are called ‘micro-agents’), or a group of objects which have
to be considered together during the generalisation process, for example, to be aggregated
or typified (such agents are called ‘meso-agents’).

The target state of the generalised data is formalised by a set of constraints on some of
the agent characteristics. For example, an agent which has to be big enough to be legible
will have a constraint on its size, which will force it to enlarge. The constraints assigned on
an agent and their goal values depend on the required target state of the generalised data.
Each constraint is characterised by a satisfaction value. The overall satisfaction value of an
agent is expressed as the mean of its constraint satisfactions weighted by their importance.
In addition, constraints are characterised by a list of transformations a priori suitable to
improve their satisfactions. Thus, the agent is guided by its constraints during its generali-
sation process. For example, the size constraint will propose an enlargement transformation
to its agent if it is too small.

The purpose of each agent is to reach a perfect state that is a state where all constraints
are satisfied. In most cases, such a state does not exist and an optimum state that satisfies
the constraints as well as possible has to be found. To reach this goal, each agent follows the
action cycle presented in Figure 1. First, the agent evaluates its state. If its state is not per-
fect and the pruning criterion is not satisfied, the most pertinent transformation is applied.
If the pruning criterion is satisfied and the current state is the initial state, it means the
whole tree has been explored, and then the process terminates. If there is no transformation
to try from a given state, the agent goes back to a previous state until he/she has found
a transformation to try. This action cycle results in a classical depth-first informed explo-
ration of a state tree. Figure 2 shows an example of such a state tree for a building. Each
node is a state (the root is the initial state), and each link corresponds to the application of
a transformation algorithm.

Local search-based generalisation models require the definition of important control
knowledge elements. For the AGENT model, some of these knowledge elements can
be captured using machine learning techniques as proposed by Taillandier (2007) and
Taillandier et al. (2011). In this article, we investigate the knowledge concerning the
pruning criterion.

Start

End

End

Evaluation

Perfect state?

Pruning criterion test

Construction of  the transformation list

Remaining transformations to try?

Best transformation application Back to previous state

Back to initial state?

Invalid state

Yes

Yes

Yes

No

No

No

Valid state

Figure 1. The AGENT model action cycle.
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Scaling to
rectangle Scaling

Scaling

Squaring

Valid state

Invalid state

Best state

Simplification
to rectangle Simplification

Generalisation

1

2

4

3

5

6

7

1: 15 k 1: 50 k

Figure 2. Example of a state tree for the generalisation of a building.

3. State validity and pruning criterion

A valid state is defined as a state whose children have to be explored during the process – an
invalid state is a state where the exploration stops (see Figure 2). All children of a valid state
are a priori interesting to explore – a better state may be among them. All children of an
invalid state are supposed to be irrelevant to compute and examine. The pruning criterion
determines the validity of a state. This criterion has a great impact on the generalisation
process. It influences two major characteristics of the generalisation process:

• Effectiveness: Effectiveness is the capability to produce a high-quality outcome.
Because different parts of the tree are explored depending on the pruning criterion,
the best state encountered during the exploration process and so, the outcome quality,
is affected.

• Efficiency: Efficiency is the capability to produce an outcome fast. A restrictive prun-
ing criterion will result in a short exploration, so the process will return a result
faster.

These two characteristics are in opposition: Effective processes usually have a low effi-
ciency, and the opposition is true. When many states are explored, the probability to get
a better optimum state increases. The challenge of the pruning criterion choice is to find
a satisfying balance between efficiency and effectiveness of the exploration. This balance
depends on the user preference between a quick process and a high-quality outcome.

A common pruning criterion consists in using a comparison of the successive states:
A state is valid when its satisfaction S is better than its parent’s one S′, plus a threshold
value So: S ≥ S′ + So. (The threshold value So is usually small, but not null in order to
ensure the process termination.) This pruning criterion ensures an improvement of the sat-
isfaction value when the exploration goes deeper in the tree. However, this criterion limits
the possibility to explore many interesting states for which a local satisfaction lowering is
necessary. This problem is comparable with the local minimum problem of the steepest gra-
dient method. Some other common pruning criteria such as ‘branch and bound’ (Land and
Doig 1960) are not applicable to the specific problem of generalisation state exploration.
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In order to face this issue, some researchers (Regnauld 2001, Taillandier 2007) have
pointed out the necessity to define an ad hoc criterion for the AGENT model. According
to the most commonly used pruning criterion, a state is valid if these two conditions are
satisfied:

• The satisfaction of the constraint which proposed the transformation has been
improved more than a threshold.

• There is a partial improvement compared with all other states of the tree. A state is
partially better than another if at least one of its constraints has a higher satisfaction
than the other one.

The second condition assures the termination of the process: The constraint satisfaction
value is an integer number within [0, 100], so the number of constraint satisfaction config-
urations is finite (its value is 101N , where N is the number of constraints). Thus, the second
condition will not be satisfied anymore after at least N101 tries. With this pruning criterion,
good results are obtained, but it is not fully satisfying. In some cases, satisfying states are
not reached, while in other cases satisfying states could be obtained faster. Our purpose
is to further study the efficiency and effectiveness of different pruning criteria in order to
provide recommendations on how to choose it.

4. New pruning criteria

The pruning criterion may be defined using the state satisfaction (the overall value or the
constraint ones) compared with other already encountered states (all of them or only the
previous one). The pruning criterion may be a logical expression of several conditions.
We propose the following ones.

Two conditions based on the comparison with the previous state:

• Condition on the previous state global improvement (CPSGI): This condition is sat-
isfied if the state overall satisfaction is greater than its parent one. This condition
corresponds to the heuristic used by the steepest gradient descent.

• Condition on the previous state constraint improvement (CPSCI): This condition is
satisfied if the satisfaction of the constraint proposing the transformation has been
improved. This condition is most of the time satisfied.

Three conditions based on the comparison with all other encountered states are as
follows:

• Condition on the state set based on the non-similarity (CSSNS): This condition is
satisfied if the state is not comparable with any other state. Two states are comparable
if all their constraint satisfaction values are the same. With this condition, many
states with different constraint satisfaction configurations are explored.

• Condition on the state set based on partial improvement (CSSPI): This condition
is satisfied if the state is partially better compared with the other states. A state is
partially better than another if at least one of its constraints has a higher satisfaction
than the other one. This condition is more restrictive than the CSSNS condition
because it allows only improvement of constraint satisfactions.

• Condition on the constraint set based on partial improvement (CCSPI): This
condition is satisfied if a constraint satisfaction is higher than for the other states.
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1314 P. Taillandier and J. Gaffuri

Some other additional conditions are as follows:

• Condition on the state set threshold number (CSSTN(N)): This condition is satisfied
if the tree state number is less than a threshold value N . This constraint does not
depend on the state. It ensures the termination of the process.

• Random condition (RC(p)): This condition is randomly satisfied according to a
probability p within ]0,1].

• No condition (NC): This condition is always satisfied. All states will be explored
until the agent reaches a perfect state or has explored the whole tree. It is equivalent
to the condition RC(1.0).

This list is not exhaustive – it may be adapted and extended depending on the need and
the generalisation model specificities. Many pruning criteria may be defined using logical
expressions of these conditions. We propose to test the following ones:

• Criterion 1: CPSCI
• Criterion 2: CPSCI and CPSGI
• Criterion 3: CPSCI and CPSGI and CSSNS
• Criterion 4: CPSCI and CPSGI and CSSPI
• Criterion 5: CPSCI and CSSNS
• Criterion 6: CPSCI and CSSPI
• Criterion 7: CPSGI
• Criterion 8: CPSGI and CSSNS
• Criterion 9: CPSGI and CSSPI
• Criterion 10: CSSNS
• Criterion 11: CSSPI
• Criterion 12: CCSPI
• Criterion 13: CPSCI and CCSPI
• Criterion 14: CPSCI and CPSGI and CCSPI
• Criterion 15: CPSGI and CCSPI
• Criterion 16: RC(0.2)
• Criterion 17: RC(0.5)
• Criterion 18: NC.

We assume these pruning criteria provide a good range of criteria, more or less restrictive,
with different balances between efficiency and effectiveness. The last three criteria are
tested to have a reference in terms of effectiveness and efficiency for the other criteria. The
most commonly used pruning criterion in the AGENT model is criterion 6.

Not all conditions ensure a theoretical termination of the exploration process. To solve
this problem, a limit application number is assigned to each transformation: For each
branch of the tree, the agent is not allowed to apply each transformation more than this
limit number. Including such a limitation is acceptable, because computing the same trans-
formation a large number of times on an object is often useless (many algorithms need to
be applied only once – only few algorithms based on an incremental approach demand to
be applied a large number of times). This limitation ensures the termination of the pro-
cess – the maximal state number an agent can encounter is (N × AMax)!/AMax!N with
N being the number of transformations, and AMax the maximum number of tries of each
transformation. Finally, to ensure a practical termination of the process, we have used the

D
ow

nl
oa

de
d 

by
 [

E
ur

op
ea

n 
C

om
m

is
si

on
] 

at
 0

3:
53

 1
8 

Fe
br

ua
ry

 2
01

3 



International Journal of Geographical Information Science 1315

condition CSSTN(1000) for all criteria. We consider a criterion producing a tree with more
than 1000 states has an unacceptable efficiency, and the process should stop.

5. Experiments and results

5.1. Test cases

The proposed pruning criteria have been tested on four typical generalisation cases: the
generalisation of buildings and urban blocks for 1:25k and 1:50k scales (see Figure 3).
For building generalisation, six constraints and seven transformation algorithms have been
used, and three constraints and five transformation algorithms for block generalisation
(Figures 2, 3 and 7 give an overview of the effect of these algorithms). The same constraints
and transformations have been used for both scales (1:25k and 1:50k), but with different
goal values. Further description of these constraints and algorithms is given in Ruas and
Mackness (1997) and Taillandier (2008).

The input data were BDTopo® data produced by IGN France on a sample of 846 build-
ings and 139 urban blocks. For each test, several characteristics of the generalisation
process have been measured in order to assess the pruning criterion.

5.2. Effectiveness and efficiency measures

In order to assess the impact of a pruning criterion on the generalisation process
effectiveness and efficiency, we propose to capture the following measurements:

• For effectiveness assessment, the distribution of the final satisfaction of the gener-
alised objects.

• For efficiency assessment, the distribution of the total encountered state numbers.
(The process duration distribution could have been used, but it depends on which
transformations were computed and also on the computer processor speed.)

Figure 4 shows two charts obtained for criterion 1 on the 846 buildings set for 1:25k scale.
Each chart represents a distribution: It is the ranking of the 846 buildings according to

Figure 3. Examples of generalisation for scales 1:25k and 1:50k.
Source: Data from the IGN France digital landscape model BDTopo®.
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Figure 4. Test output example: the criterion 1, on the 846 buildings set, for the 1:25k scale.
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M = 39.04
σ = 8.17

M = 21.96
σ = 9.63

0 250 500 750

Figure 5. Satisfaction distribution of the four cases in the initial state: buildings and blocks for
1:25k and 1:50k scales.

the value considered. Each distribution is summarised by its average value M and the SD
value σ . We base the assessment of each criterion on such kind of outcome. Figure 5 shows
the satisfaction distributions in the initial state for the four cases. These distributions show
how unsatisfied the objects are in their initial state. Objects for the 1:50k scale are less
satisfied than for the 1:25k, because more constraints are violated when the scale change
is bigger.

5.3. Results and discussion

Table 1 shows the outputs for the proposed criteria. As expected, the criteria have dif-
ferent effectiveness and efficiency levels. The computation of the generalisation with
criterion 18, the theoretically least restrictive criterion (all states are valid) did not suc-
ceed – no output has been obtained. Criteria 16 and 17 (based on random choices) give
interesting outcomes: The RC(0.2) has an excellent efficiency level but a very low effec-
tiveness level. The opposite output is obtained for the RC(0.5) criterion. These three criteria
illustrate the necessity to choose suitable exploration heuristics in order to better control
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the effectiveness/efficiency balance. As expected, restrictive criteria are more efficient but
less effective than less restrictive ones. For example, criterion 10 is less restrictive than
criterion 12, and is therefore more effective but less efficient.

When comparing the four test cases (building/block, 1:25k/1:50k), differences in
effectiveness and efficiency are observed: Resulting effectiveness is higher for buildings
than for blocks, and (almost) always for 1:25k than for 1:50k. The opposite result is
obtained for the efficiency. This difference can be explained by the fact that generalisa-
tion is more difficult for blocks than for buildings, and for 1:50k than for 1:25k. When
comparing the criteria for each case, similar results are observed: Effective and efficient
criteria for one case are also effective and efficient for another. This shows that the quality
of a criterion may be considered as independent of the generalisation case. For this rea-
son, we propose to assess each criterion by its mean effectiveness and efficiency for each
tested case. Figure 6 shows the repartition of the criteria in the effectiveness/efficiency
space (criteria 16–18 are not displayed). As expected, there is no perfect criterion with
high effectiveness and efficiency: A balance has to be chosen. Pertinent criteria are along
the dashed grey line, which represents the Pareto frontier of our optimisation problem.
According to this frontier line, the most interesting criteria are 8–11. Criterion 10 is the
most effective one. Criterion 9 is the most efficient one with an acceptable effectiveness
(criteria 12–15 are more efficient, but the difference is insignificant, while the difference in
terms of effectiveness is important). Criteria 11 and 8 are good balances between effective-
ness and efficiency: Criterion 11 is more efficient and criterion 8 is more effective. Because
criterion 9 is comparable with criterion 11, we propose to eliminate it.
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Figure 6. Mean efficiency and effectiveness of the tested pruning criteria.
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Initial state
Criterion 10 Criterion 9 Criterion 8
S = 97.25 S = 94.51 S = 95.25
Nb = 24 Nb = 7 Nb = 13

Figure 7. Output examples on a building for the 1:25k scale.

Therefore, according to these tests, our recommendation for the pruning criterion
choice is the following:

• For an effective process, which produces high-quality output, criterion 10 (CSSNS)
is recommended.

• For an efficient process, which produces a good quality output quickly, criterion 11
(CPSGI and CSSPI) is recommended.

• For a generalisation, which balances output quality and process efficiency, criterion 8
(CPSGI and CSSNS) is recommended.

Figure 7 shows the generalisation obtained for a building with the three criteria. For some
cases (especially for simple buildings), same outputs are obtained for different pruning
criteria. The challenge of the pruning criterion choice is to obtain a quick exploration for
simple objects, and a deeper one for much more complex objects. Simple buildings such
as buildings with only four corners only need the computation of a few states to find a
satisfying one; much more complex buildings such as the one presented in Figure 7 need a
deeper exploration. The criteria we propose contribute to solve this problem.

6. Conclusion and perspectives

In this article, the importance of the pruning criterion choice in generalisation based on
a tree search has been presented. We have shown the consequences of this choice on the
generalisation effectiveness and efficiency. Several new pruning criteria have been intro-
duced and tested. As a result, three pruning criteria with different levels of efficiency and
effectiveness have been recommended.

To go further, other efficiency measures could be tested. We used a measure based
on the number of states. A more robust measure should take into account an estimated
computation time of each algorithm. A performance measure of each algorithm could also
be used: This measure could be a mean ratio between satisfaction gain and computation
time – it would assess the capability of an algorithm to improve states as much as possible,
and as fast as possible.

Even if we observed similar results for the four generalisation cases, the effect of each
pruning criterion changes depending on the generalisation case (data theme, target scale,
data density and so on). It should not be excluded that some specific cases may require the
use of a more specific pruning criterion. Suitable pruning criteria could be recommended
for some sets of predetermined generalisation cases.

As mentioned by Taillandier et al. (2009), different elements of knowledge of an
informed tree search can be interdependent: The quality of one knowledge element can
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1322 P. Taillandier and J. Gaffuri

affect the quality of another. For example, if some knowledge elements used to guide the
exploration process (transformation application domain, constraint priority and so on) are
not robust, generalising with a restrictive pruning criterion can lead to bad generalisations.
For our case study, guiding knowledge elements were robust ones. It would be interesting
to analyse the effect of our pruning criteria on non-robust guiding knowledge elements.

The way to translate the user needs in terms of effectiveness and efficiency could be
improved. Indeed, we proposed criteria for users who want a fast or an effective process.
It could be interesting to let users express their needs as formulations like: ‘I want the
best generalisation you can compute in X seconds’. The strategy to apply for such kind of
problems has to be established. In the emerging context of online and on-demand mapping,
the customisation of automatic mapping systems according to the user needs is becoming
crucial.

Finally, this work is a new example of successful implementation of artificial intelli-
gence techniques in automated mapping and geographical information sciences. For other
problems, such as automatic labelling or automatic map colour assignment, where a tree
search is considered, the methodology we presented may be applied.
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