
Using human-machine dialogue to refine generalisation
evaluation function

Patrick Taillandier1,2
 and Julien Gaffuri3

1 IRD, UMI UMMISCO 209,

32 avenue Henri Varagnat, 93143 Bondy, France
2 IFI, MSI, UMI 209,

ngo 42 Ta Quang Buu, Ha Noi, Viet Nam
3 IGN – COGIT laboratory – Paris-Est University

73 avenue de Paris, 94165 Saint-Mandé cedex, France
patrick.taillandier@gmail.com

julien.gaffuri@ign.fr

1. Introduction	
More and more geographical data producers use automated generalisation to produce their
data. Indeed, the spreading of artificial intelligence techniques has allowed an important
improvement of the generalisation process automation.

A classic approach consists in formalising generalisation as an optimisation problem: the
goal is to find a state of the data that maximises a function. [2], [7] and [13] present
adaptations to generalisation of the finite elements method, whose purpose is to minimise an
energy function. [22] use simulated annealing to find a global optimum of a utility function.
By using genetic algorithms, [9] and [23] propose to maximise a fitness function. All these
methods use a function that is supposed to assess the generalisation state of the data,
according to the user need. We propose to call this function “evaluation function” (the
expressions “utility function”, “fitness function”, “energy” or even “satisfaction” are also
often used). A key issue of this approach concerns the design of this evaluation function.
Indeed, in order to get good results, such systems have to know what it is searching, i.e. what
a good generalisation of the input data is. Unfortunately, designing such a function remains a
difficult task. Indeed, while the final user of the generalised data can easily describe his need
in natural language, it is often far more difficult for him to express his expectations in a
formal language that can be used by generalisation systems. This problem is particularly
complex when numerous measures are used to characterise the quality of a generalisation and
when no simple links between these measures values and the solution quality can be found.

 In this paper, we propose an approach dedicated to the design of generalisation evaluation
functions. An evaluation function previously designed by a user is improved through a
dialogue between this user and the generalisation system. The idea is to collect user
preferences by letting the user compare different generalisation results for a same object (or
group of objects).

In Section 2, the general context of our work is introduced. Section 3 is devoted to the
presentation of our approach. Section 4 describes an experiment carried out for the building
generalisation. Section 5 concludes and presents the perspectives of this work.

2. Context	

2.1. 	 Automated	 evaluation	 of	 generalisation	 results	
If many works focus on the generalisation process automation, only a few deal with the
problem of the automatic evaluation of generalisation outcomes.

A classic approach used by many generalisation systems consists in evaluating the
generalisation quality by means of a set of constraints translating the expectation towards the
generalisation [5]. The constraint assessment is often represented by a numeric satisfaction
value. The overall generalisation is evaluated by aggregating all the constraint satisfaction
values. If the computation of individual constraint satisfaction values is often well-managed,
the definition of the aggregating function remains complex [19]. Indeed, it requires finding a
good balance between constraints that can be in opposition. For example, concerning building
generalisation, the granularity constraint and the shape preservation constraints are in
opposition: when the granularity constraints becomes more satisfied, the preservation
constraints become less satisfied. In this work, we are interested in the definition of this
aggregation function.

Among other works that deal with automatic generalisation evaluation, [3] proposes a
generalisation evaluation method based on the definition of functions translating the expected
evolution of geographic objects during generalisation. These functions are then aggregated in
order to get a global quality value of the generalised data.

In the context of an EuroSDR project, that concerns the evaluation of generalisation
systems, [18] propose to use both manual (expert) and automatic evaluation to assess the
quality of generalised data. Concerning the automatic evaluation, the used approach is based
on the evaluation of a set of constraints. In the context of this project, the goal was to evaluate
a complete generalised dataset, while we rather propose to focus on the individual
generalisation quality of objects or groups of objects.

2.2. Design	 of	 an	 evaluation	 function	
The evaluation function design is a complex problem which was studied in various fields.

Indeed, the definition of such function is a key point of the resolution of optimisation
problems [17], [20]. Many works were interested in the definition of these functions for
specific problems [13] [24] but few proposed general approaches for helping optimisation
systems users to define it.

A classic approach to solve this problem consists in using supervised machine learning
techniques. These techniques consist in inducing a general model from examples labelled by
an expert. In this context, it is possible to learn an evaluation function from examples assessed
by an expert. This approach was used in several works, like [24] in the domain of computer
vision, and [8] for the learning of cognitive radio. To be effective, this approach requires that
an expert is able to give a quantitative evaluation of the different examples, which can be
difficult when many criteria can be used to evaluate the examples.

2.3. Formalisation	 of	 the	 evaluation	 function	 design	
Our work aims at providing a method to help users to design an evaluation function. We

assume that a set of constraints is defined that translate the expectation toward the generalised
data. We assume as well that the constraints assessment is represented by a numeric
satisfaction value. The higher this value, the more satisfied the constraint is, thus better the
generalisation is. The evaluation function design consists then in defining an aggregating
function that allows the generalisation quality to be assessed by a single value. A key point of
our problem is to determine a satisfying model for the aggregating function. We propose to
formulate this aggregating function by a weighted means balanced by a power.

Let C be the set of constraints considered, wi the weight associated to a constraint i,
Vali(gen), the satisfaction value of the constraint i for the generalisation gen, and p, an integer
higher or equal to 1. An evaluation function is then defined as follows:

p
(gen)Valw

w
=n)quality(ge p

Ci
i

p
i

Ci

p
i

1

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅∑∑ ∈

∈

When p is equal to 1, the aggregation is a simple weighted average of the constraints

satisfactions. The role of the p parameter is to control the relative weight of the most satisfied
constraints over the less satisfied ones: the higher is p, the more satisfied constraints are taken
into account in the overall quality of the object. An interest of such a representation is to
remain easily interpretable by domain experts – it is so possible for an expert to validate the
result of an automatic learning of such a function. The level of interpretation of results is
often considered in generalisation systems design [16].

3. Proposed	 approach	

3.1. General	 approach	
It is often difficult for experts to express their outcome expectation toward a generalisation

system in a formal way. In this context, we state the hypothesis that it is easier to comment
generalisation results in a qualitative way. Thus, we propose to base our objective function
design approach on the collection of user comments toward generalisation results. This
approach is close to the one proposed by [12] concerning the parameterisation of the
generalisation process. However, a difference is that the user will not just select his/her
preferred generalisation among a set, but he/she will compare these generalisations. Each
comparison is composed of two generalisations of the same object (or group of objects). The
user can give his/her preferences toward these two generalisations, i.e. if a generalisation is
far better or slightly better than the other one, etc. The system then automatically builds the
evaluation function from the collected preference data.

Our approach is composed of 3 steps (Figure 1): the first one consists in generating a set of
generalisation samples. Each sample is composed of different generalisations for a same
object (or group of objects). The second step consists in capturing the comments made by the
user on each of these samples. The last step consists in using these comments to automatically
refine the evaluation function. The following sections describe these three steps.

Figure 1. General approach

3.2. Building	 of	 generalisation	 samples	
The first step concerns the building of the generalisation samples that will be shown to the

user to capture his needs. Each sample is composed of n generalisations of the same object (or
groups of objects).

In order to build the generalisation samples, different objects (or groups of objects) have to
be generalised. The number of generalised objects depends on the application context of our
approach. In some contexts, it will only be possible to generalise few objects due to the
availability of the objects or to time constraint. Thus, for some application context, a sampling
method such as the one presented in [21] will have to be used in order to select a
representative subset of objects.

We assume that the generalisation of the objects (or a group of objects) will lead to the
generation of at least n possible generalisations. These possible generalisations are used to
build a generalisation sample.

3.3. Capture	 of	 the	 user	 preferences	
The second step concerns the collection of user comments. A set of generalisation sample is

presented to the user, who can then comment each of them.
We propose two kinds of comments:
• Comments linked to the quality of a generalisation.
• Comments linked to the preference of a generalisation over another one.

Concerning the first kind of comments, we defined two levels of quality. Let A be a

generalisation. The two possible quality levels are:
• Solution A is good.
• Solution A is bad.

Concerning the second type of comments, we defined four possible preference relations. Let

A and B be two different generalisations. The four possible preference relations are:
• Generalisation A is far better than generalisation B.
• Generalisation A is better than generalisation B.
• Generalisation A is slightly better than generalisation B.
• Generalisation A and B are equivalent.

Figure 2 presents the comparison interface of the prototype we developed.

Figure 2. The user preference capture interface implemented

Once this step carried out, we dispose of a set generalisation samples commented by the
user.

3.4. Refinement	 of	 the	 evaluation	 function	
This last step consists in refining the evaluation function from the user comments collected

in the previous step. Refining the evaluation function means finding, from the existing
evaluation function, the parameter values (i.e. the criteria weights wi and the power p) that
best fits the comments given by the user.

We propose to formulate this problem as a minimisation problem. We define a global error

function that represents the inadequacy between an evaluation function (and thus the
parameter value assignment) and the user comments. Our goal is to find the parameter values
that minimise the global error function.

Let feval(gen) be the current evaluation function used to evaluate the quality of a

generalisation gen.
Let { } []Niigens

,1∈
be a generalisation sample composed of N generalisations for a same object

(or group of objects).
Let cs be a comment formulated by the user concerning the generalisation sample s.

We define the function comp(s, feval, cs) that determines for a generalisation sample s if the
user comment cs is compatible with the evaluation function feval. If the user comment cs is
compatible with feval, comp(s, feval, cs) is equal to 1, otherwise it is equal to 0. comp(s, feval, cs)
is computed by the following formula:

This formula introduces 8 new parameters:
• goodvalmin : minimal quality value from which a generalisation can be considered as good.
• badvalmax : maximal quality value for a generalisation to be considered as bad.
• FBvalmin : minimal difference quality value from which a generalisation is far better than

another one.
• Bvalmin : minimal difference quality value from which a generalisation is better than

another one.
• Bvalmax : maximal difference quality value for a generalisation to be better than another

one.
• SBvalmin : minimal difference quality value from which a generalisation is slightly better

than another one.
• SBvalmax : maximal difference quality value for a generalisation to be slightly better than

another one.
• Eqval : maximal difference quality value between two generalisations to be equivalent.

These parameters confer a fuzzy aspect to the notion of compatibility and allow to make a

link between the qualitative comments of the user and the numeric quality values. They have
to be specifically defined for each application.

The global error function corresponds to the percentage of comments of the set of

generalisation samples S that are incompatible with the evaluation function feval. Let CS be the

set of comments contained in S. The global error is computed by the following formula:

∑
∈

−×=
Ss Cc

seval
S

eval cfscomp
C

SfError),,(1100),(

The lower the Error(feval, S) value, the better the evaluation function is. The goal of this step

is then to search the evaluation function parameter values that minimise this error function.
Because of the size of the search space that will usually be high, it is not possible to carry out
a complete search. Thus, we propose to use a metaheuristic to find the best parameter values.
In the literature, numerous metaheuristics were introduced [10][11][15].

In this work, we search to refine an existing evaluation function and to not learn one from
scratch. Indeed, we make the hypothesis that, most of the time, experts can design a good
evaluation function that can be a good start for the search process. In consequence, we
propose to use a local search algorithm. The principle of this kind of algorithm is to start with
an initial solution and to attempt to improve it by exploring its neighbourhood. These
algorithms are usually very effective for this kind of search problem. There are numerous
local search algorithms such as hill climbing, tabu search [10] or simulated annealing [15]. In
the context of our evaluation function design process, the time spent by the search method is
not a major issue. Hence, it is preferable to use methods which allow to avoid getting stuck in
a local optimum, like the tabu search or the simulated annealing does, rather than a simple
hill-climbing. Concerning the choice between these two methods, the experiments, we carried
out, showed similar results.

Local search algorithms require the definition of the notions of 'solution neighbourhood'.
We define the neighbourhood of a solution as the set of solutions for which only one
parameter (the weight of a criterion wi or the power p) has its value changed.

4. Case	 study:	 evaluation	 of	 building	 generalisation	

4.1. Context	

4.1.1. The	 generalisation	 system	
Our experiment use a generalisation system based on the AGENT model [4][16] and the

GéOxygene Java library [1]. In this model, geographic objects (roads, buildings, etc) are
modelled as agents. These geographic agents manage their own generalisation by choosing
and applying generalisation operations to themselves. Each state of the agent represents the
geometric state of the considered geographic objects.

During its generalisation process, each agent is guided by a set of constraints that represents
the specifications of the desired cartographic product. Each constraint has a satisfaction level
between 0 (constraint not satisfy at all) and 100 (constraint perfectly satisfy).

To satisfy its constraints as well as possible, a geographical agent carries out a cycle of
actions during which it tests different actions in order to reach a perfect state (where all of its
constraints are perfectly satisfied) or at least the best possible state. The action cycle results in
an informed exploration of a state tree. Figure 3 gives an example of a state tree obtained with
the generalisation system for a building.

Figure 3. Example of a state tree build for a building generalisation

The AGENT model has been the core of numerous research works and is used for map
production in several mapping agencies. However, the question of the evaluation of the state
of an agent is still asked. The definition of the weight values is often complex and fastidious
when more than five constraints are in stake [3]. Thus, having an approach like the one we
proposed is particularly interesting.

4.1.2. Building	 generalisation	
We propose to experiment our method for building generalisation for a traditional 1:25000

scale topographic map. The input data we used for the experiments are taken from the
BDTopo®, the one meter resolution topographic database produce by IGN, the French
national mapping agency. We use five constraints for the building agents:

• Building size constraint (SC): this constraint incites a building to be big enough in
order to be legible at the target scale.

• Building granularity constraint (GC): this constraint incites a building to have a
simple shape: the building is transformed in order to delete its too short edges.

• Building squareness constraint (QC): this constraint incites a building whose angles
are almost orthogonal to have perfectly orthogonal angles.

• Building convexity constraint (CC): this constraint incites a building to preserve its
convexity. Convexity is measured by the ratio of the building area and its convex hull
area.

• Building elongation constraint (EC): this constraint incites the building to preserve its
elongation. Elongation is, like convexity, a shape characteristic, which has to be
preserved for the best.

4.2. Experimental	 protocol	
In order to evaluate our approach, we build two sets of generalisation samples, both composed
of 20 generalisation samples. Each sample consists in the comparison of 3 generalisations for
a same building that were selected randomly among the available ones. These two
generalisation sample sets were generated from different buildings, which were taken from
the French cities of Bourg d'Oisans and L'Alpe d'Huez. For each of them, a generalisation
expert formulated 100 comments.
The first generalisation sample set, the learning set, was used to revise the evaluation
functions. The second one, the test set was used to evaluate the refined evaluation function.

In order to analyse the impact of the initial objective function quality, we tested our approach
with two initial evaluation functions:

• Basic objective function: this function corresponds to the scenario where no knowledge
is available concerning the evaluation of building generalisation. The objective function
is a simple average of the constraint satisfaction values (p , and all constraint weights
are equal to 1):

())()()()()(
5
1)(genValgenValgenValgenValgenValgenSat ECCCQCGCSC ++++=

• Expert evaluation function: this function has been defined by a generalisation expert.

The tuning of this function had required a long process and knowledge about the
generalisation system. For the need of 1:25000 topographic maps, the requirements
concerning the building size and granularity is higher than the squaring, and other shape
preservation constraints. The p parameter is used to give more importance to the
constraints that are more satisfied. So, the following function is proposed:

() () () () ()()22222)(5)(5)(2)(7)(10
203
1)(genValgenValgenValgenValgenValgenSat ECCCQCGCSC ⋅+⋅+⋅+⋅+⋅=

The parameter values used for the consistency computation were the following:
• goodvalmin = 80
• badvalmax= 65
• FBvalmin= 15
• Bvalmin= 3
• Bvalmax= 30
• SBvalmin= 1
• SBvalmax= 20
• Eqval = 1

We used the simulated annealing [15] method to search the best parameter values.

4.3. Results	 and	 discussion	
The objective function obtained after refining the Basic evaluation function is the following:

() () () () ()() 5
1

55555)(3)(0)(6)(2)(8
40819
1)(⎟

⎠

⎞
⎜
⎝

⎛ ⋅+⋅+⋅+⋅+⋅= genValgenValgenValgenValgenValgenSat ECCCQCGCSC

The one obtained after revising the Expert evaluation function is the following:

() () () () ()() 5
1

55555)(1)(1)(6)(4)(8
41570
1)(⎟

⎠

⎞
⎜
⎝

⎛ ⋅+⋅+⋅+⋅+⋅= genValgenValgenValgenValgenValgenSat ECCCQCGCSC

Table 1 presents the results obtained on the two sample sets. The percentage value is given by
the global error function defined in Section 3.4. It represents the part of comments formulated
by the expert that are not compatible with the assessment of the evaluation function. These
values have to be as small as possible.

Global error

Basic evaluation
function

Expert evaluation
function

Initial
function

Refined
function

Initial
function

Refined
function

Learning set 0.46 0.25 0.32 0.24

Test set 0.45 0.26 0.32 0.25

Table 1. Global error rate on the learning and test sets

First, we can notice the difficulties of defining a good evaluation function for an expert.

Indeed, even with a good command of the AGENT model, the generalisation expert did not
succeed in designing an evaluation function that perfectly translates his expectations toward
the generalisation results.

Concerning the result obtained after revision, we can observe that the two refined
evaluation functions are significantly better than the initial ones, both on the learning and test
sets. We can also observe that the evaluation function obtained after refining the Expert
evaluation function is slightly better than the one obtained after refining the Basic evaluation
function. Indeed, the refined Expert evaluation function keeps some of the specificity of the
initial function, in particular concerning the high weight of the granularity constraint. This last
observation confirms the interest of taking into account an initial evaluation function.

If the result obtained with the refined evaluation functions are better than ones obtained
with the initial evaluation functions, the results are not perfect. Actually the global error rate
is still high (0.24-0.25). This high error rate can be explained by two main reasons.

The first one concerns the lack of pertinent measures to describe the generalisation results.
For example, when a comparison composed of two building generalisations, which differ only
in term of orientation is shown, the user always prefers the one whose orientation is close to
the building initial orientation. Because there is no orientation constraint taken into account
into the evaluation function, the difference of the two generalisations can not be measured by
the system, and the reason of the different assessment by the user remains ignored. Thus,
adding pertinent constraint such as one assessing the building orientation could help to reduce
the error rate.

The second reason comes from the formalism used to represent the evaluation function: a
weighted means balanced by a power. This function has for advantage to be very simple and
easily readable. However, it does not allow to express the discontinuity of some criteria
concerning their contribution to the global solution quality. For example, light squaring
problems are insignificant for the global generalisation quality, but if these problems are more
serious, the generalisation quality can be very poor. Thus, extending the formalism we used to
represent the evaluation functions in order to take into account these discontinuities can help
to design better evaluation functions.

5. Conclusion	
In this paper, we presented an approach dedicated to the refinement of generalisation

evaluation functions. We proposed a method based on a human-machine dialogue and the
capture of user preferences on samples of generalisation results. An experiment, carried out
for building generalisation, showed that our approach can help users to improve their

evaluation functions.
Our approach is based on the presentation of generalisation samples to an expert. The

choice of the sample presented to the expert at each iteration can have a deep impact on the
data collected and thus on the refinement results. In our experiments, the presented samples
were chosen randomly. More complex strategies could be defined to present more interesting
samples to the user. These strategies could take into account the comments already formulated
by the expert.

As mentioned in Section 4.3, another interesting perspective could consist in extending the
formalism used to define the evaluation function in order to take into account the
discontinuity of the criterion contributions. In this context, the works carried out in the
domain of multi-criteria decision making (e.g. [6]) could be used as a base.

References	 	
1. Badard, T., Braun, A.: OXYGENE: An open framework for the deployment of

geographic web services. International Cartographic Conference, Durban, South
Africa, pp 994-1004 (2003)

2. Bader, M.: Energy minimization methods for feature displacement in map
generalisation. Ph.D. thesis, Zurich university, Department of geography (2001)

3. Bard S.: Quality Assessment of Cartographic Generalisation, Transactions in GIS, 8, pp.
63-81 (2004)

4. Barrault, M., Regnauld, N., Duchêne, C., Haire, K., Baeijs, C., Demazeau, Y., Hardy,
P., Mackaness, W., Ruas, A., Weibel, R.: Integrating multi-agent, object-oriented,
and algorithmic techniques for improved automated map generalization. International
Cartographic Conference, pp. 2110--2116, (2001)

5. Beard, K.: Constraints on rule formation. In Buttenfield, B. & Mcmaster, R. (eds.) Map
generalisation: making rules for knowledge representation, 121-135 (Longman
Scientific and Technical, 1991).

6. Brans, J.P., Mareschal, B.: ‘Promethee methods’, in Multiple Criteria Decision
Analysis: State of the Art Surveys, Springer (2005).

7. Burghardt, D., Meier, S.: Cartographic displacement using the snakes concept. In: W.
Foerstner & L. Pluemer (eds.), Semantic modelling for the acquisition of topographic
information from images and maps. Birkhaeuser verlag, Basel (1997)

8. Clancy, C., Hecker, J., Stuntebeck, E., O'Shea, T.: Applications of Machine Learning to
Cognitive Radio Networks, Wireless Communications, IEEE, vol. 14, no. 4, pp. 47-
52 (2007)

9. Deng, H., Fang, W., Yang, O., Li, Y.: A model of road network generalisation based on
genetic algorithms. International Cartographic Conference, Durban, South Africa,
(2003).

10. Glover, F.: Tabu search. Journal on Computing (1989)
11. Holland, J.H.: Adaptation in Natural and Artificial Systems, Ann Arbor: University of

Michigan Press (1975)
12. Hubert, F., Ruas, A.: A method based on samples to capture user needs for

generalisation, Workshop on progress in automated map generalisation, Paris (2003).

13. Højholt, P.: Solving local and global space conflicts in map generalisation using a finite
element method adapted from structural mechanics. SDH'98, pp. 679-689 (1998)

14. Kakade, S., Teh, Y.W., Roweis, S.: An alternative objective function for Markovian
fields. In Proc. ICML (2002)

15. Kirkpatrick, S., Gellatt, C., Vecchi, M.P.: Optimization by Simulated Annealing,
Science 220, pp.671—680 (1983)

16. Ruas, A., Duchêne, C.: A prototype generalisation system based on the multi-agent
system paradigm. In: Mackaness, W.A., Ruas, A., Sarjakoski, L.T. (ed.),
Generalisation of Geographic information: cartographic modelling and applications,
Elsevier Ltd, pp. 269—284 (2007)

17. Russel, S., Norvig, P.: Artificial intelligence: a modern approach Prentice-Hall (1995)
18. Stoter, J., Burghardt, D., Duchêne, C., Baella, B., Bakker, N., Blok, C., Pla, M.,

Regnauld, N., Touya, G., Schmid, S.: Methodology for evaluating automated map
generalization in commercial software, Computers, Environment and Urban Systems,
vol.33, n°5, pp 311-324 (2009)

19. Taillandier, P.: Diagnosis in systems based on an informed tree search strategy:
application to cartographic generalisation, CSTST Student workshop, Cergy-
Pontoise, France (2008)

20. Taillandier, P., Duchêne, C., Drogoul, A.: Knowledge revision in systems based on an
informed tree search strategy: application to cartographic generalisation. CSTST pp.
273--278, Paris (2008)

21. Taillandier, P., Gaffuri, J.: Automatic Sampling of Geographic objects. GIScience,
Zurich, Switzerland (2010).

22. Ware, M. J., Jones, C. B.: Conflict Reduction in Map Generalization Using Iterative
Improvement. GeoInformatica 2(4):383-407 (1998)

23. Wilson, I. D., Ware, J. M., Ware, J. A.: Reducing graphic conflict in scale reduced maps
using a genetic algorithm. Workshop on progress in automated map generalisation,
commission on map generalisation, Paris, France (2003)

24. Wimmer, M., Stulp, F., Pietzsch, S., Radig, B.: Learning local objective functions for
robust face model fitting. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 30(8) (2008)

