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1. Introduction	  
More and more geographical data producers use automated generalisation to produce their 
data. Indeed, the spreading of artificial intelligence techniques has allowed an important 
improvement of the generalisation process automation. 

A classic approach consists in formalising generalisation as an optimisation problem: the 
goal is to find a state of the data that maximises a function. [2], [7] and [13] present 
adaptations to generalisation of the finite elements method, whose purpose is to minimise an 
energy function. [22] use simulated annealing to find a global optimum of a utility function. 
By using genetic algorithms, [9] and [23] propose to maximise a fitness function. All these 
methods use a function that is supposed to assess the generalisation state of the data, 
according to the user need. We propose to call this function “evaluation function” (the 
expressions “utility function”, “fitness function”, “energy” or even “satisfaction” are also 
often used). A key issue of this approach concerns the design of this evaluation function. 
Indeed, in order to get good results, such systems have to know what it is searching, i.e. what 
a good generalisation of the input data is. Unfortunately, designing such a function remains a 
difficult task. Indeed, while the final user of the generalised data can easily describe his need 
in natural language, it is often far more difficult for him to express his expectations in a 
formal language that can be used by generalisation systems. This problem is particularly 
complex when numerous measures are used to characterise the quality of a generalisation and 
when no simple links between these measures values and the solution quality can be found. 

 In this paper, we propose an approach dedicated to the design of generalisation evaluation 
functions. An evaluation function previously designed by a user is improved through a 
dialogue between this user and the generalisation system. The idea is to collect user 
preferences by letting the user compare different generalisation results for a same object (or 
group of objects).  

In Section 2, the general context of our work is introduced. Section 3 is devoted to the 
presentation of our approach. Section 4 describes an experiment carried out for the building 
generalisation. Section 5 concludes and presents the perspectives of this work. 

2. Context	  

2.1. 	  Automated	  evaluation	  of	  generalisation	  results	  
If many works focus on the generalisation process automation, only a few deal with the 
problem of the automatic evaluation of generalisation outcomes.  



A classic approach used by many generalisation systems consists in evaluating the 
generalisation quality by means of a set of constraints translating the expectation towards the 
generalisation [5]. The constraint assessment is often represented by a numeric satisfaction 
value. The overall generalisation is evaluated by aggregating all the constraint satisfaction 
values. If the computation of individual constraint satisfaction values is often well-managed, 
the definition of the aggregating function remains complex [19]. Indeed, it requires finding a 
good balance between constraints that can be in opposition. For example, concerning building 
generalisation, the granularity constraint and the shape preservation constraints are in 
opposition: when the granularity constraints becomes more satisfied, the preservation 
constraints become less satisfied. In this work, we are interested in the definition of this 
aggregation function. 

Among other works that deal with automatic generalisation evaluation, [3] proposes a 
generalisation evaluation method based on the definition of functions translating the expected 
evolution of geographic objects during generalisation. These functions are then aggregated in 
order to get a global quality value of the generalised data. 

In the context of an EuroSDR project, that concerns the evaluation of generalisation 
systems, [18] propose to use both manual (expert) and automatic evaluation to assess the 
quality of generalised data. Concerning the automatic evaluation, the used approach is based 
on the evaluation of a set of constraints. In the context of this project, the goal was to evaluate 
a complete generalised dataset, while we rather propose to focus on the individual 
generalisation quality of objects or groups of objects.  

2.2. Design	  of	  an	  evaluation	  function	  
The evaluation function design is a complex problem which was studied in various fields. 

Indeed, the definition of such function is a key point of the resolution of optimisation 
problems [17], [20]. Many works were interested in the definition of these functions for 
specific problems [13] [24] but few proposed general approaches for helping optimisation 
systems users to define it. 

A classic approach to solve this problem consists in using supervised machine learning 
techniques. These techniques consist in inducing a general model from examples labelled by 
an expert. In this context, it is possible to learn an evaluation function from examples assessed 
by an expert. This approach was used in several works, like [24] in the domain of computer 
vision, and [8] for the learning of cognitive radio. To be effective, this approach requires that 
an expert is able to give a quantitative evaluation of the different examples, which can be 
difficult when many criteria can be used to evaluate the examples.  

2.3. Formalisation	  of	  the	  evaluation	  function	  design	  
Our work aims at providing a method to help users to design an evaluation function. We 

assume that a set of constraints is defined that translate the expectation toward the generalised 
data. We assume as well that the constraints assessment is represented by a numeric 
satisfaction value. The higher this value, the more satisfied the constraint is, thus better the 
generalisation is. The evaluation function design consists then in defining an aggregating 
function that allows the generalisation quality to be assessed by a single value. A key point of 
our problem is to determine a satisfying model for the aggregating function. We propose to 
formulate this aggregating function by a weighted means balanced by a power. 



Let C be the set of constraints considered, wi the weight associated to a constraint i, 
Vali(gen), the satisfaction value of the constraint i for the generalisation gen, and p, an integer 
higher or equal to 1. An evaluation function is then defined as follows: 
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When p is equal to 1, the aggregation is a simple weighted average of the constraints 

satisfactions. The role of the p parameter is to control the relative weight of the most satisfied 
constraints over the less satisfied ones: the higher is p, the more satisfied constraints are taken 
into account in the overall quality of the object. An interest of such a representation is to 
remain easily interpretable by domain experts – it is so possible for an expert to validate the 
result of an automatic learning of such a function. The level of interpretation of results is 
often considered in generalisation systems design [16]. 

3. Proposed	  approach	  

3.1. General	  approach	  
It is often difficult for experts to express their outcome expectation toward a generalisation 

system in a formal way. In this context, we state the hypothesis that it is easier to comment 
generalisation results in a qualitative way. Thus, we propose to base our objective function 
design approach on the collection of user comments toward generalisation results. This 
approach is close to the one proposed by [12] concerning the parameterisation of the 
generalisation process. However, a difference is that the user will not just select his/her 
preferred generalisation among a set, but he/she will compare these generalisations. Each 
comparison is composed of two generalisations of the same object (or group of objects). The 
user can give his/her preferences toward these two generalisations, i.e. if a generalisation is 
far better or slightly better than the other one, etc. The system then automatically builds the 
evaluation function from the collected preference data. 

Our approach is composed of 3 steps (Figure 1): the first one consists in generating a set of 
generalisation samples. Each sample is composed of different generalisations for a same 
object (or group of objects). The second step consists in capturing the comments made by the 
user on each of these samples. The last step consists in using these comments to automatically 
refine the evaluation function. The following sections describe these three steps. 

 

 
Figure 1. General approach 



3.2. Building	  of	  generalisation	  samples	  
The first step concerns the building of the generalisation samples that will be shown to the 

user to capture his needs. Each sample is composed of n generalisations of the same object (or 
groups of objects). 

In order to build the generalisation samples, different objects (or groups of objects) have to 
be generalised. The number of generalised objects depends on the application context of our 
approach. In some contexts, it will only be possible to generalise few objects due to the 
availability of the objects or to time constraint. Thus, for some application context, a sampling 
method such as the one presented in [21] will have to be used in order to select a 
representative subset of objects.  

We assume that the generalisation of the objects (or a group of objects) will lead to the 
generation of at least n possible generalisations. These possible generalisations are used to 
build a generalisation sample. 

3.3. Capture	  of	  the	  user	  preferences	  
The second step concerns the collection of user comments. A set of generalisation sample is 

presented to the user, who can then comment each of them. 
We propose two kinds of comments: 
• Comments linked to the quality of a generalisation. 
• Comments linked to the preference of a generalisation over another one. 

 
Concerning the first kind of comments, we defined two levels of quality. Let A be a 

generalisation. The two possible quality levels are: 
• Solution A is good. 
• Solution A is bad. 

 
Concerning the second type of comments, we defined four possible preference relations. Let 

A and B be two different generalisations. The four possible preference relations are: 
• Generalisation A is far better than generalisation B. 
• Generalisation A is better than generalisation B. 
• Generalisation A is slightly better than generalisation B. 
• Generalisation A and B are equivalent. 

 
Figure 2 presents the comparison interface of the prototype we developed. 
 



 
Figure 2. The user preference capture interface implemented 

Once this step carried out, we dispose of a set generalisation samples commented by the 
user. 

3.4. Refinement	  of	  the	  evaluation	  function	  
This last step consists in refining the evaluation function from the user comments collected 

in the previous step. Refining the evaluation function means finding, from the existing 
evaluation function, the parameter values (i.e. the criteria weights wi and the power p) that 
best fits the comments given by the user. 

 
We propose to formulate this problem as a minimisation problem. We define a global error 

function that represents the inadequacy between an evaluation function (and thus the 
parameter value assignment) and the user comments. Our goal is to find the parameter values 
that minimise the global error function. 

 
Let feval(gen) be the current evaluation function used to evaluate the quality of a 

generalisation gen.  
Let { } [ ]Niigens

,1∈
be a generalisation sample composed of N generalisations for a same object 

(or group of objects). 
Let cs be a comment formulated by the user concerning the generalisation sample s.  
 



We define the function comp(s, feval, cs) that determines for a generalisation sample s if the 
user comment cs is compatible with the evaluation function feval. If the user comment cs is 
compatible with feval, comp(s, feval, cs) is equal to 1, otherwise it is equal to 0. comp(s, feval, cs) 
is computed by the following formula: 

 

 
This formula introduces 8 new parameters: 
• goodvalmin : minimal quality value from which a generalisation can be considered as good.  
• badvalmax : maximal quality value for a generalisation to be considered as bad. 
• FBvalmin : minimal difference quality value from which a generalisation is far better than 

another one. 
• Bvalmin : minimal difference quality value from which a generalisation is better than 

another one. 
• Bvalmax : maximal difference quality value for a generalisation to be better than another 

one. 
• SBvalmin : minimal difference quality value from which a generalisation is slightly better 

than another one. 
• SBvalmax : maximal difference quality value for a generalisation to be slightly better than 

another one. 
• Eqval : maximal difference quality value between two generalisations to be equivalent. 

 
These parameters confer a fuzzy aspect to the notion of compatibility and allow to make a 

link between the qualitative comments of the user and the numeric quality values. They have 
to be specifically defined for each application. 

 
The global error function corresponds to the percentage of comments of the set of 

generalisation samples S that are incompatible with the evaluation function feval. Let CS be the 



set of comments contained in S. The global error is computed by the following formula: 
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The lower the Error(feval, S) value, the better the evaluation function is. The goal of this step 

is then to search the evaluation function parameter values that minimise this error function. 
Because of the size of the search space that will usually be high, it is not possible to carry out 
a complete search. Thus, we propose to use a metaheuristic to find the best parameter values. 
In the literature, numerous metaheuristics were introduced [10][11][15]. 

In this work, we search to refine an existing evaluation function and to not learn one from 
scratch. Indeed, we make the hypothesis that, most of the time, experts can design a good 
evaluation function that can be a good start for the search process. In consequence, we 
propose to use a local search algorithm. The principle of this kind of algorithm is to start with 
an initial solution and to attempt to improve it by exploring its neighbourhood. These 
algorithms are usually very effective for this kind of search problem. There are numerous 
local search algorithms such as hill climbing, tabu search [10] or simulated annealing [15]. In 
the context of our evaluation function design process, the time spent by the search method is 
not a major issue. Hence, it is preferable to use methods which allow to avoid getting stuck in 
a local optimum, like the tabu search or the simulated annealing does, rather than a simple 
hill-climbing. Concerning the choice between these two methods, the experiments, we carried 
out, showed similar results. 

Local search algorithms require the definition of the notions of 'solution neighbourhood'. 
We define the neighbourhood of a solution as the set of solutions for which only one 
parameter (the weight of a criterion wi or the power p) has its value changed. 

4. Case	  study:	  evaluation	  of	  building	  generalisation	  

4.1. Context	  

4.1.1. The	  generalisation	  system	  
Our experiment use a generalisation system based on the AGENT model [4][16] and the 

GéOxygene Java library [1]. In this model, geographic objects (roads, buildings, etc) are 
modelled as agents. These geographic agents manage their own generalisation by choosing 
and applying generalisation operations to themselves. Each state of the agent represents the 
geometric state of the considered geographic objects. 

During its generalisation process, each agent is guided by a set of constraints that represents 
the specifications of the desired cartographic product. Each constraint has a satisfaction level 
between 0 (constraint not satisfy at all) and 100 (constraint perfectly satisfy).  

To satisfy its constraints as well as possible, a geographical agent carries out a cycle of 
actions during which it tests different actions in order to reach a perfect state (where all of its 
constraints are perfectly satisfied) or at least the best possible state. The action cycle results in 
an informed exploration of a state tree. Figure 3 gives an example of a state tree obtained with 
the generalisation system for a building. 

 



 
Figure 3. Example of a state tree build for a building generalisation 

The AGENT model has been the core of numerous research works and is used for map 
production in several mapping agencies. However, the question of the evaluation of the state 
of an agent is still asked. The definition of the weight values is often complex and fastidious 
when more than five constraints are in stake [3]. Thus, having an approach like the one we 
proposed is particularly interesting. 

4.1.2. Building	  generalisation	  
We propose to experiment our method for building generalisation for a traditional 1:25000 

scale topographic map. The input data we used for the experiments are taken from the 
BDTopo®, the one meter resolution topographic database produce by IGN, the French 
national mapping agency. We use five constraints for the building agents: 

• Building size constraint (SC): this constraint incites a building to be big enough in 
order to be legible at the target scale. 

• Building granularity constraint (GC): this constraint incites a building to have a 
simple shape: the building is transformed in order to delete its too short edges. 

• Building squareness constraint (QC): this constraint incites a building whose angles 
are almost orthogonal to have perfectly orthogonal angles. 

• Building convexity constraint (CC): this constraint incites a building to preserve its 
convexity. Convexity is measured by the ratio of the building area and its convex hull 
area. 

• Building elongation constraint (EC): this constraint incites the building to preserve its 
elongation. Elongation is, like convexity, a shape characteristic, which has to be 
preserved for the best. 

4.2. Experimental	  protocol	  
In order to evaluate our approach, we build two sets of generalisation samples, both composed 
of 20 generalisation samples. Each sample consists in the comparison of 3 generalisations for 
a same building that were selected randomly among the available ones. These two 
generalisation sample sets were generated from different buildings, which were taken from 
the French cities of Bourg d'Oisans and L'Alpe d'Huez. For each of them, a generalisation 
expert formulated 100 comments.  
The first generalisation sample set, the learning set, was used to revise the evaluation 
functions. The second one, the test set was used to evaluate the refined evaluation function. 
 
In order to analyse the impact of the initial objective function quality, we tested our approach 
with two initial evaluation functions: 



• Basic objective function: this function corresponds to the scenario where no knowledge 
is available concerning the evaluation of building generalisation. The objective function 
is a simple average of the constraint satisfaction values (p , and all constraint weights 
are equal to 1): 
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• Expert evaluation function: this function has been defined by a generalisation expert. 

The tuning of this function had required a long process and knowledge about the 
generalisation system. For the need of 1:25000 topographic maps, the requirements 
concerning the building size and granularity is higher than the squaring, and other shape 
preservation constraints. The p parameter is used to give more importance to the 
constraints that are more satisfied. So, the following function is proposed: 
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The parameter values used for the consistency computation were the following: 
• goodvalmin = 80 
• badvalmax= 65 
• FBvalmin= 15 
• Bvalmin= 3 
• Bvalmax= 30 
• SBvalmin= 1 
• SBvalmax= 20 
• Eqval = 1 

 
We used the simulated annealing [15] method to search the best parameter values.  

4.3. Results	  and	  discussion	  
The objective function obtained after refining the Basic evaluation function is the following: 
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The one obtained after revising the Expert evaluation function is the following:  
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Table 1 presents the results obtained on the two sample sets. The percentage value is given by 
the global error function defined in Section 3.4. It represents the part of comments formulated 
by the expert that are not compatible with the assessment of the evaluation function. These 
values have to be as small as possible. 
 



 

 

Global error 

Basic evaluation 
function 

Expert evaluation 
function 

Initial 
function 

Refined 
function 

Initial 
function 

Refined 
function 

Learning set 0.46 0.25 0.32 0.24 

Test set 0.45 0.26 0.32 0.25 

Table 1. Global error rate on the learning and test sets 

 
First, we can notice the difficulties of defining a good evaluation function for an expert. 

Indeed, even with a good command of the AGENT model, the generalisation expert did not 
succeed in designing an evaluation function that perfectly translates his expectations toward 
the generalisation results. 

Concerning the result obtained after revision, we can observe that the two refined 
evaluation functions are significantly better than the initial ones, both on the learning and test 
sets. We can also observe that the evaluation function obtained after refining the Expert 
evaluation function is slightly better than the one obtained after refining the Basic evaluation 
function. Indeed, the refined Expert evaluation function keeps some of the specificity of the 
initial function, in particular concerning the high weight of the granularity constraint. This last 
observation confirms the interest of taking into account an initial evaluation function. 

If the result obtained with the refined evaluation functions are better than ones obtained 
with the initial evaluation functions, the results are not perfect. Actually the global error rate 
is still high (0.24-0.25). This high error rate can be explained by two main reasons. 

The first one concerns the lack of pertinent measures to describe the generalisation results. 
For example, when a comparison composed of two building generalisations, which differ only 
in term of orientation is shown, the user always prefers the one whose orientation is close to 
the building initial orientation. Because there is no orientation constraint taken into account 
into the evaluation function, the difference of the two generalisations can not be measured by 
the system, and the reason of the different assessment by the user remains ignored. Thus, 
adding pertinent constraint such as one assessing the building orientation could help to reduce 
the error rate. 

The second reason comes from the formalism used to represent the evaluation function: a 
weighted means balanced by a power. This function has for advantage to be very simple and 
easily readable. However, it does not allow to express the discontinuity of some criteria 
concerning their contribution to the global solution quality. For example, light squaring 
problems are insignificant for the global generalisation quality, but if these problems are more 
serious, the generalisation quality can be very poor. Thus, extending the formalism we used to 
represent the evaluation functions in order to take into account these discontinuities can help 
to design better evaluation functions.  

5. Conclusion	  
In this paper, we presented an approach dedicated to the refinement of generalisation 

evaluation functions. We proposed a method based on a human-machine dialogue and the 
capture of user preferences on samples of generalisation results. An experiment, carried out 
for building generalisation, showed that our approach can help users to improve their 



evaluation functions. 
Our approach is based on the presentation of generalisation samples to an expert. The 

choice of the sample presented to the expert at each iteration can have a deep impact on the 
data collected and thus on the refinement results. In our experiments, the presented samples 
were chosen randomly. More complex strategies could be defined to present more interesting 
samples to the user. These strategies could take into account the comments already formulated 
by the expert. 

As mentioned in Section 4.3, another interesting perspective could consist in extending the 
formalism used to define the evaluation function in order to take into account the 
discontinuity of the criterion contributions. In this context, the works carried out in the 
domain of multi-criteria decision making (e.g. [6]) could be used as a base. 
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