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INTRODUCTION  

Work capitalisation is an important issue to improve the usefulness of research and the link with 
production lines and commercial software, as it is essential to be able to reuse theoretical research results 
to perpetually enhance processes efficiency. Some discussions during past workshops have identified this 
particular point as a central question in research, especially for NMAs [Stoter 2005]. The problem of 
linking research and practice is also underlined by the recent EuroSDR project [Stoter & al. 2010]. 
Indeed, the creation of complete and shareable platforms to perform past and present research seems to be 
essential in a goal of capitalisation and efficient link with production lines. The aim of this paper is to 
focus on what should be necessary for such a platform in terms of system architecture, specific research 
needs and technical realisations. 

For the particular case of COGIT laboratory, many pieces of research on geographical data 
generalisation have been held for twenty years, resulting in the development of many generalisation 
software components (algorithms, measures, models, etc…). Nevertheless, a global environment where 
all these components could be used altogether in a collaborative way is still missing: they run on different 
platforms and use different programming languages. To solve this issue, our work over the past two years 
focused on finding a way to capitalise all these research results by gathering these components in order to 
be able to launch a global generalisation process. A crucial part of this work is the creation of a research 
platform which gathers all previous works on generalisation and proposes new tools to make research 
more efficient, more powerful and more suited for sharing. That necessity led us to a think about the 
needs of such a software. 

The aim of this paper is to begin a reflexion about research capitalisation through an innovating 
computer software. It first gives an overview of the general needs and objectives for a generalisation 
research platform, then focusing on the generalisation research case in COGIT laboratory. Then the 
chosen architecture covering the combination of different software and languages is presented, as well as 
the technical realisations that have already been achieved. The last section deals with the further needed 
improvements and the possible benefits for future research, both in and outside COGIT laboratory. 

1. EXPRESSION OF NEED 

In a context of generalisation research, there are key features that should be available in a research 
platform. The most important one is the possibility to share techniques between researchers and to 
externalize functionalities [Edwardes & al. 2007]. In an optic of pooling and capitalisation, that point is 
essential. In our own analysis, it covers the following issues: 

− normalised coding and documentation to make collaboration easier, using the norm ISO 19107, 



− possibility to integrate research work in other domains (simulation, legend conception, data 
integration, …), 

− sharing of the interface without technical difficulties. 

Moreover, building a software dedicated to a particular field of geographic sciences obviously raises 
the question of its fitness to the usual aspects of a Geographic Information System. The platform has to 
face efficiently the main functionalities of a GIS, especially those concerning data archiving, treatments 
and analysis, and geographical display. It is obvious that many different solutions already exist in the 
currently used generalisation systems, for instance: 

− archiving : Gothic, ArcGIS, PostGIS, SHP files… 

− analysis : generalisation models, Gothic treatments, java algorithms, … 

− display: JADE/Clarity, GeOxygene, independent GUI, … 

As capitalisation also throws the question of interoperability, all these software solutions should be 
performed one with another without any difficulty; that is a crucial point to build an efficient platform. A 
component-based software seems to be the most sensible approach, the requirements of such an 
architecture being adapted to our current needs [Rütschlin 2000]. Indeed, the very core of the platform 
should act as a hub which makes the different components work together, as illustrated in figure 1, using 
interfaces on which the components could reconnect. With such an architecture, it would be possible to 
disconnect one of the component and to replace it by another software solution, depending on the habits 
and on the needs of the user. So the platform could be easily shared by people using different work 
environments – for example from people using exclusively Gothic to people using Java algorithms on an 
independent GUI based on PostGIS. Based on this architecture, other components could obviously be 
added if necessary. 

 
Figure 1 - Theoretical component-based architecture for an efficient platform 

Some additional specific components are needed for research. For example, processes traceability 
tools are in order to control all what is done, to see the possible blocking points, and to improve the 
algorithms by correcting their core. Edition tools are also essential to create test areas and particular cases 
which might not exist in every dataset. Last, the possibility to load data from various sources seems to be 
a important point for the interoperability of the platform. 

Besides, a particular need concerns the possibility to create generalisation web services in a context of 
on-demand mapping. The principles of such an evolution have already been raised [Neun & Burghardt 
2005] [Regnauld 2007], and an important aspect of a generalisation platform is to be able to support the 
upcoming evolutions in this domain. 

2. APPLICATION TO A SPECIFIC CASE : CARTAGEN 

Several generalisation environments have been developed in the COGIT in the past twenty years, 
balancing between two different solutions: first platforms were totally dedicated to research (PlaGe and 



Stratege), then commercial platforms (Lamps2 and Radius Clarity, from 1Spatial) were more suitable to 
link research results with production issues (see [Lecordix & al. 2005]). If these commercial platforms 
offer the great advantage of being easily sharable with production lines and to provide a helpful 
commercial support, they also throw additional constraints on the code control and evolution which led 
some pieces of research to be developed in other programming environments. 

COGIT current generalisation research mainly relies on four models derived from PhDs results since 
1999 (figure 2). Future works towards on-demand mapping should be based on these models : 

− the AGENT model [Ruas 1999], developed on Lamps2 during the European project AGENT 
[Lamy & al. 1999] then transferred on the generalisation platform Clarity, and partially recoded 
on the COGIT platform GeOxygene [Badard & Braun 2003], 

− the CartACom model [Duchêne 2004] developed on Lamps2, 

− the GAEL model [Gaffuri 2008] developed on GeOxygene and partly transferred into Clarity, 

− the knowledge revision component [Taillandier 2008] developed in Clarity and then transferred 
on GeOxygene. 

 
Figure 2 - Generalisation models developed at COGIT, their most relevant 

application cases and their programming environment. 

The interactions between these models still raise modelling issues [Duchêne & Gaffuri 2008]. Apart 
from theoretical collaboration between the processes, the main technical problem is raised by the 
difficulty to compute together algorithms coded with different programming languages (Lull and Java) 
and running on different software (Lamps2, Clarity and GeOxygene). As a consequence, it appeared that 
a necessary step to improve our mastery on automated generalisation was to reengineer a programming 
environment which allows an integration of these different models in a complete generalisation platform. 
The first step of this capitalisation work is to create an orchestration model to make existing 
generalisation models – from COGIT and from other research – work together in a collaborative way 
[Touya & al. 2010]. In parallel, the second step is the development of this new generalisation platform 
called CartAGen (for CARTographic Agent GENeralisation), which is supposed to answer the needs 
developed in part 1. 

These particular needs are not covered by our current research platform Clarity, whose goals are 
significantly different, so a new platform is necessary. A complete reengineering of the core of our 
models is needed, which cannot be done directly in Clarity since its core is not expected to be deeply 
modified. Being able to work easily on the core of the software is a necessary condition to make the 
different models collaborate. Nevertheless, there are some reasons why we cannot totally abandon it, 
especially because of its topology model which is very powerful. In addition of topology, many 
algorithms are working well in Clarity, and their recoding could be a huge waste of time. 

There were other particular points which motivated us to change our work environment. The use of 
Clarity as a research platform also brings some additional inconvenience, for instance the lack of tools 
which could be useful for research (editing tools, process traceability, etc…). The aim of the new 
platform is also to provide these work tools for a better control on processes, and to create a more 
efficient work environment. 



In fact, the main problem is to design a work environment which is suitable on the one hand for 
research process, and on the other hand for the link with production lines, but an ideal intermediate 
solution to face this paradox might not exist. In this optic, the adaptability of the platform to research 
rather than to production should be preferred. 

All these specific needs led us to the absolute necessity to create a new computer software, and to the 
preliminary question of the architecture and the technical realisation of this generalisation platform in 
order to ensure a good capitalisation for past works. 

3. SYSTEM ARCHITECTURE  

It appears that the global answer to the need is partly split in two opposite solutions : using Clarity and 
its spatial DBMS Gothic, or developing in GeOxygene environment using another spatial DBMS like 
PostGIS. So it seems to be necessary to use both solutions and to make them work in collaboration, by 
connecting some GeOxygene libraries to Gothic treatments through Clarity. The question being: where to 
put the cursor between these two different aspects ? 

The final goal of the platform is to propose a component-based structure: it is designed as a set of 
interacting software components, each of them focusing on a specific research problem and potentially 
using other lower level components. By this way, components can be easily reused, the platform can be 
extended and mature components could be transferred to production lines. 

To achieve this goal, CartAGen is based on a first platform prototype developed to bypass some of the 
identified drawbacks of Clarity as a research platform [Gaffuri 2008]. This prototype was already using 
GeOxygene and Java code. Using this as a basis for further developments allows the addition of new tools 
and new functionalities without any difficulties. Indeed, the central problem is how to combine this 
external platform with a Gothic dataset to be able to use Clarity topology or special algorithms that are 
not recoded in Java. 

 
Figure 3 - Data infrastructure to combine GeOxygene objects, agent process and Gothic environment. 

A complete geographic schema has been defined ; just a few classes are represented here. 

This sharp combination is based on a data structure that creates a Gothic dataset containing Gothic 
objects homologue to Java objects existing in CartAGen. As shown on figure 3, a generic geographic 
schema has been created, based on GeOxygene own schema. Each object of this schema is instantiated in 
a Gothic based part of the structure which ensures the link with the corresponding Gothic object in 
Clarity, and is delegated to a GeOxygene object. These two datasets (Java and Gothic) are updated in 
parallel, using one or the other depending on the treatment that is applied: 

− topology treatments or special Clarity algorithms are computed on Gothic dataset, 



− other treatments are computed on Java objects. 

A significant advantage of such a structure is to clearly isolate all classes that rely on the Gothic part 
of the platform, so it could be possible to disconnect this Gothic based substructure if necessary ; it seems 
to be sensible to identify the DBMS – nowadays Gothic – as an own independent component of the 
platform. Indeed, in terms of modularity, we should consider the possible use of other spatial DBMS such 
as Oracle or PostGIS in order to ensure the platform portability. In this optic, that architecture allows to 
pass over the Gothic based part of the platform and to instantiate Java objects through an other DBMS or 
directly in the GeOxygene geographic schema. This separation makes the system management much 
easier and offers some relevant perspectives for further work. 

It is significant to note that the theoretical component-based structure proposed in figure 1 is 
equivalent to the practical architecture presented in figure 3: external components are connected to the 
very core of the platform: generalisation treatments are ensured through the Agent model, and 
GeOxygene is used to display geographical objects in the GUI. Archiving component can be either 
Gothic or another GIS. 

4. TECHNICAL REALISATION  

The GUI illustrated on figure 4 totally relies on an original prototype [Gaffuri 2008]. The interface 
proposes most of the classical behaviours of GIS software, like layers management or data loading. 
Global generalisation can be performed using the agent process, but generalisation algorithms are also 
accessible independently and directly computable one-by-one through the different toolbars,  so the user 
can have mastery on everything he wants to do – that point is a huge assess in a research process. 

 
Figure 4 - CartAGen GUI: layers are managed on the left panel, Agent process is launched using the right 

panel, and the top menu gives the access to independent algorithms and configuration properties 



The link between Java and Gothic is ensured by a cache mechanism managing the update of the 
Gothic dataset. Every created, modified or deleted Java object is put into the cache, which is committed to 
update the Gothic dataset every time a Gothic treatment is needed so the Gothic dataset is precisely 
corresponding to Java world every time it is used. This mechanism is a good way to save time, since the 
cache is never committed as long as no Gothic treatment is computed. Indeed, cache commit is a heavy 
step of computation because of the many geometry conversions it implies. 

Many useful tools have been added to the first prototype, including for instance the possibility to add 
flying geometries over the data in order to test processes without any modification on the dataset. Some 
editing tools developed through an internship are about to be integrated to the interface. Figure 5 gives an 
example of another powerful research tool, which offers the possibility to replay any step of an agent 
generalisation process, displaying for each step the previous treatments that have been computed, the 
current agent satisfaction and a view of the current agent geographical state. Such a tool is very useful to 
perform traceability and to control every step of a process, and gives interesting perspectives to detect and 
improve the incorrect parts of a process. 

     
Figure 5 - Generalisation tree, allowing to replay an Agent generalisation process. 

Through our research work, CartAGen has also been tested with significant differences in the 
components used. For instance, instantiating generic CartAGen objects through Gothic instead of 
GeOxygene and using Clarity as a display component works well and offers new possibilities in the use 
of the platform. Concerning analysis and treatments, the co-existence of Agent and CartACom models 
doesn’t raise any problem. Archiving through SHP files instead of Gothic datasets is in progress and will 
be soon fully operational. These few tests prove that the component-based architecture is sensible and that 
it allows large possibility in terms of interoperability and sharing. 

5. FURTHER WORK AND PERSPECTIVES  

Most of the work has already been done concerning the core of the platform. Particularly, the link 
between GeOxygene (Java) and Clarity (Gothic) with a cache mechanism has been coded and seems to be 
sensible. The only thing that is still remaining on this particular point concerns topology creation and 
management through the cache. AGENT and GAEL models are completely integrated to the platform, 
CartACom recoding in Java is in progress. The integration of the module for knowledge revision will be 
performed later. The current work mainly consists in recoding in Java – or encapsulating Lull code – the 
algorithms developed in the past PhDs and studies, in order to gradually gather all developments at the 
same place and to be able eventually to compute global generalisation on large datasets. 

With the capitalisation of all processes and models, and the addition of powerful tools to help research, 
the final goal of the platform is to make our research work faster, easier and more efficient. Even if the 



platform realisation is not fully achieved, its first uses allow us to already notice some of its interesting 
perspectives. For instance, it should be a well suited environment to move towards the development of 
generalisation web services in a context of on-demand mapping. Overall, the interoperability ensured by 
the component-based architecture offers new possibilities to share models and algorithms with external 
researchers and is a real promise for future collaborative work. 
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